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Abstract

Bayesian networks are the basis for a new generation of probabilistic expert
systems, which allow for exact (and approximate) modelling of physical,
biological and social systems operating under uncertainty. Bayesian networks
are also an important representational tool for data mining, in causal discovery.
Applications range across the sciences, industries and government
organizations. At Monash University, Bayesian AI has been used for graphical
expert systems for medical diagnosis and prognosis, in meteorological
predication, environmental management, intelligent tutoring systems,
epidemiology, poker and other applications. Norsys (www.norsys.com) list
hundreds of additional applications of Bayesian AI. This talk will explain the
basics of the technology, illustrate them with example Bayesian networks, and
discuss the growth in the use of Bayesian networks in recent years. The
technology is not only mature, but is becoming more widely accepted in major
projects.
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The Certainty of Uncertainty

Sources of uncertainty:
World laws. Laws governing world (events) may be

stochastic.
• Long tradition of ignoring this possibility
• This is hardly plausible in view of the

probabilistic theories of: genetics,
economics, physics, etc.

Inaccessibility. Operation of hidden variables makes
relations btw observed variables stochastic.

Measurement error. Uncertainty of measurement
translates into uncertain relations btw
measured variables.
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Bayes’ Theorem

Discovered by Rev Thomas Bayes; published
posthumously in 1763
Forward Inference: P(e|h) – e.g., what is the probability
of heads given a fair coin?
Bayes’ Inverse Inference Rule:

P(h|e) =
P(e|h)P(h)

P(e)

posterior = (likelihood× prior)α

• Forward inference tells us likelihoods
• Finding priors is the main problem in applying Bayes’

Rule
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Bayes’ Theorem

For 30 years Bayes’ Rule has NOT been used in AI
• Not because it was thought undesirable

and not due to lack of priors, but
• Because: it was (thought) infeasible
⇒ requires full joint probability
⇒ computation is exponential in number of possible

states
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Bayesian Reasoning for
Humans (BRH)

First: it’s important
Cancer Problem

You have been referred to a specialty clinic. You are told
that one in one hundred appearing at the clinic have
cancer X and that the tests are positive given cancer X
80% of the time and they also are positive 10% of the time
in people without cancer X.

What is the probability that you have cancer X?

1 ≈ 99%

2 ≈ 80%

3 50-50

4 ≈ 30%

5 ≈ 7%
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BRH: Bayes’ Theorem

Second: it’s “hard”

P(c|p) =
P(p|c)P(c)

P(p|c)P(c) + P(p|¬c)P(¬c)

=
.8× .01

.8× .01 + .1× .99

=
.008

.008 + .099

=
.008
.107

≈ .075
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BRH: Frequency Formats

Third: it’s easy — multiply!

1000

8

10

2 99 889

990

c not−c

p n
p n

Classification tree for breast cancer

P(c|p) =
P(c, p)

P(p)
=

8
8 + 99

⇒ Even easier: use Bayesian networks!
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Cancer X

You may have cancer X. You are in a suspect category
where the rate is 10%. A test Y is positive given cancer
70% of the time and it is also positive 10% of the time
without cancer.

What is the probability that you have cancer X?

1 ≈ 90%

2 ≈ 70%

3 ≈ 60%

4 50-50

5 ≈ 40%

6 ≈ 10%

OK, what’s the probability given a positive test?



Bayesian Artificial
Intelligence

11/75

Abstract

Reichenbach’s
Common Cause
Principle

Bayesian networks

Causal discovery
algorithms

References

Cancer X: Frequency Formats

10

c not−c

p n
p n

90

7 3 9 81

100

P(c|p) =
P(c, p)

P(p)
=

7
7 + 9

≈ 0.44
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AI History: Idiot Bayes

An attempt to simplify probabilistic reasoning in 1960s
medical diagnostic programs. Assumed:
• Diseases marginally independent

• E.g., Flu and TB independent
• Symptoms independent given disease

• E.g., Sneezing & Cough given Flu (!?)
• Diseases remain independent given symptoms

• E.g., P(Flu|Cough,¬TB) = P(Flu|Cough)
• This is obviously wrong!
• Indeed, if P(TB ∨ Flu) = 1,

P(Flu|Cough,¬TB) = 1

Flu TB

Cough XRay
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Duda’s Prospector

— Duda, Hart, Nilsson (1974)
First major success for “probabilities” in expert systems.

• Elicited marginal and conditional probabilities from
experts

• Update rules were simple and fast:
• P(A, B) = min(P(A), P(B))
• P(A ∨ B) = max(P(A), P(B))
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Duda’s Prospector

Problems?
• Update rules are stupid.

Suppose rain and shine are equally likely. Then we
get:

• P(rain, shine) = min(P(rain), P(shine)) = 0.5
• P(rain ∨ shine) = max(P(rain), P(shine)) = 0.5

• Probabilities were overspecified
• If you elicit P(A), P(A|B), P(B) you have two different

ways of computing P(A):
1 P(A)
2 P(A) = P(A|B)P(B) + P(A|¬B)P(¬B)

• Leading to inconsistencies
⇒ Not necessarily bad, but requires resolution!
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Mycin’s Certainty Factors

Supposedly, a big improvement. Used in various expert
systems through the 1980s.

Certainty Factors: CF (h, e) ∈ [−1, 1]

Update Rule: Belief in conclusion =
certainty factor × belief in premises.
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Mycin’s Certainty Factors

The devil was in the details; for complex updates
• Let CF (h, e1) = x ; CF (h, e2) = y

Then

CF (h, e1 ∧ e2) =


x + y − xy if x , y ≥ 0

x+y
1−min(|x |,|y |) if xy ≤ 0
x + y + xy if x , y ≤ 0

However, David Heckerman (1986) proved CF calculus is
equivalent to probability theory IF evidential statements
are independent.

E.g., coughing and sneezing are independent of
each other!
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Physical Probability

Frequentism: anti-subjective
• Aristotle: The probable is what usu happens
• John Venn (1866): P(h) = F (h), relative to a

reference class and in the “long run”
• Richard von Mises (1919)/Church (1940): prob

identified with the limit frequency in a (hypothetical)
sequence, which is invariant under prior computable
selections of subsequences.

• Prob of rain tomorrow = 0.5 means. . .

Corresponds better with physical experiment:
probabilities don’t seem to budge because of subjective
opinions!
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Subjective Probability
Still, there seems to be a role for subjective opinion
determining betting behavior
Suppose the world is deterministic: all physical
probabilities are 0 or 1.
• It still makes sense to say that prob of rain tomorrow

is 0.5!

Needn’t rely on Laplace’s principle of indifference.
Instead, for example, use David Lewis’s

Principal Principle:

P(h|Ch(h) = r) = r

I.e., theory is a source of probability
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Subjective Probability

Other possible sources of prior probability:
• Observed frequencies

• Reichenbach’s “straight rule”

• Evolved bias
• Even max entropy
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Bayesian Networks

Next time we will look at the new technology of Bayesian
nets. . .

Note that Bayesian nets are usable regardless
of your interpretation of probability.
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Causal Graphical Models

• First systematic use of graphs for reasoning
Wigmore (1913) charts for legal reasoning

• First systematic use of specifically causal graphs
Sewall Wright (1921) for analysing
population genetics

• Simon-Blalock method for parameterization
• Structural equation models (SEMs)
• Algorithms for Bayesian network modeling

Pearl (1988), Neapolitan (1990)
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Reichenbach’s Common
Cause Principle

Common Cause Principle
Reichenbach (1956): When there is a enduring
correlation between two types of events, there is an
underlying causal explanation.

Or:
Where there’s smoke, there’s fire

Or:

1
Statistician’s Mantra
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Conditional Independence:
Causal Chains

Causal chains give rise to conditional independence:

P(C|A ∧ B) = P(C|B) ≡ A |= C|B

E.g., a sexually transmitted disease



Bayesian Artificial
Intelligence

24/75

Abstract

Reichenbach’s
Common Cause
Principle

Bayesian networks

Causal discovery
algorithms

References

Conditional Independence:
Common Causes

Common causes (ancestors) also give rise to conditional
independence:

P(C|A ∧ B) = P(C|B) ≡ A |= C|B
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Conditional Dependence:
Common Effects

Common effects (or their descendants) give rise to
conditional dependence:

P(A|C ∧ B) 6= P(A)P(C) ≡ A 6 |= C|B

E.g., inheriting a recessive trait from both parents;
explaining away.
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Causality and Probability

Dependency signature
Note that the conditional dependency structures are exact
opposite btw chains/common ancestry and “collisions”.
• Margin dependence: marginal independence
• Conditional independence: conditional dependence

This is key for causal discovery.
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Bayesian Networks

Definition (Bayesian Network)
A graph where:

1 The nodes are random variables.
2 Directed arcs (arrows) connect pairs of nodes.
3 Each node has a conditional probability table that

quantifies the effects of its parents.
4 It is a directed acyclic graph (DAG), i.e. no directed

cycles.
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Pearl’s Alarm Example

Figure: Pearl’s Alarm Example
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Factorization
Any joint probability distribution can be factorized using
any total order. E.g.,

P(B, E , A, S, J)

=
P(B, E , A, S, J)

P(J)
P(J)

= P(B, E , A, S|J)P(J)

= . . .

= P(B|E , A, S, J)P(E |A, S, J)P(A|S, J)P(S|J)P(J)
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Factorization

The advantage of graphical models is that we have a
grahical criterion for systematically simplifying this
computation, yielding:

P(B, E , A, S, J) = P(S|A)P(J|A)P(A|B, E)P(B)P(E)

NB: Note that the order is no longer arbitrary!
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The Markov condition

In order to justify the simplification, we will have to invoke
(and justify) the Markov condition:

Definition (Markov Condition)
There are no direct dependencies in the system being
modeled which are not explicitly shown via arcs.

Equivalently,

Definition (Markov Condition)
Every variable is independent of its non-descendants
given a known state for its parents.
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The Markov condition

The Markov condition is not automatically true; you have
to make it true.

When it’s false, there’s a missing arc
somewhere. The model is wrong, so go find the
right model.

Minimally, this is the right position to adopt by default;
caveats below. . .
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Inference

Given the above, a large variety of “efficient” algorithms
are available for probabilistic inference — i.e., Bayesian
inference conditioning upon observations
• exact
• or approximate (complex nets)

Efficiency depends upon network complexity (esp arc
density)

• worst case exponential (NP-hard; Cooper, 1990)
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Compactness and Node
Ordering

Compactness of BN depends upon how the net is
constructued, in particular upon the underling node order

• When constructing a BN, it’s best to add nodes in
their natural causal order, root causes through to
leaves.

• Other orderings tend to produce denser networks
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Sugar Cane

Using a small number of multiscale variables, including farm quality, soil
classes and Landsat ETM based normalised difference vegetation index, a
Bayesian belief network was constructed. The inferential capacity of the model
was used to generate the expected yield for each paddock based on
assessments 5 months prior to harvesting.

The power of the Bayesian belief network to display the model uncertainty and

to direct further research into data collection is a compelling reason to utilise

this technique.
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Sugar Cane
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Car Buyer

This is an example influence diagram for Joe, who has to decide whether to
buy a certain used car which may be a ’peach’ or a ’lemon’. He has the option
of doing some tests beforehand, and of buying it with a guarantee or not.
This is the classic example of an influence diagram derived from a decision
problem with a very asymmetric decision tree, since if Joe decides not to test
then the test results have no meaning, etc.
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Car Buyer
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Causal Ordering

Why does variable order affect network density?

Because
• Using the causal order allows direct representation

of conditional independencies
• Violating causal order requires new arcs to

re-establish conditional independencies
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Causal Ordering

Using 〈B, E , A, S, J〉

Using 〈S, J, B, E , A〉
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Causal Semantics

It’s clear that many BNs are not causal networks

• E.g., the last Alarm network above

But it’s also clear that many others are causal networks.
Furthermore, it’s clear that causal nets have advantages:
• They are more intuitive

• easier to elicit
• possible to explain

• They are more compact and efficient
• They can be machine learned
• Interventions can be reasoned about
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Bayesian Networks: Summary

BNs:
• Perform Bayesian updating on any available

evidence
• Do so efficiently when possible

• given the Markov condition
• given low arc densities, using d-separations

• Causal models are advantageous: more
understandable, more compact

Question: Can causal models really be machine learned?
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Extensions to Bayesian
Networks

Decision networks:
For decision making.

Dynamic Bayesian networks:
For reasoning about changes over time
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Making Decisions

• Bayesian networks can be extended to support
decision making.

• Preferences between different outcomes of various
plans.

• Utility theory

• Decision theory = Utility theory + Probability theory.
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Expected Utility

Definition (Expected Utility)

EU(A|E) =
∑

i

P(Oi |E , A) × U(Oi |A)

• E = available evidence,
• A = an action
• Oi = possible outcome state
• U = utility
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Utility

How are utility functions constructed?

• Often utility is equated with money
• Money in the future should be discounted compared

to money in the present
• And even discounted money is rarely equal to utility

0

utility

!$1M $0 $1M
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Type of Nodes

Chance nodes: (ovals)
Represent random variables (same as Bayesian
networks). Has an associated CPT. Parents can
be decision nodes and other chance nodes.

Decision nodes: (rectangles)
Represent points where the decision maker has a
choice of actions.

Utility nodes: (diamonds)
Represent the agent’s utility function (also called
value nodes in the literature). Parents are
variables describing the outcome state that
directly affect utility. Has an associated table
representing multi-attribute utility function.
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Sequential Decision Making

• Precedence links used to show temporal ordering.
• Network for a test-action decision sequence

X

Precedence link

Information link

Action

U

Obs

Test

Cost
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Dynamic Belief Networks

• One node for each variable for each time step.
• Intra-slice arcs FluT −→ FeverT

• Inter-slice (temporal) arcs
1 FluT −→ FluT+1

2 AspirinT −→ FeverT+1
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Fever DBN

React t Reactt+1

Flu Flut+1

t+1Th

At

t

tTh

Fevert t+1Fever

At+1
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DBN reasoning

• Can calculate distributions for St+1 and further:
probabilistic projection.

• Reasoning can be done using standard BN updating
algorithms

• This type of DBN gets very large, very quickly.
• Usually only keep two time slices of the network.
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Dynamic Decision Network

• Similarly, Decision Networks can be extended to
include temporal aspects.
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Fever DDN

U

Th

Flu

Th

React t t+1React

t+1t

t t+1Flu

t

t t+1

t+1Fever Fever

A A
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Extensions: Summary

• BNs can be extended with decision nodes and utility
nodes to support decision making: Decision
Networks or Influence Diagrams.

• BNs and decision networks can be extended to allow
explicit reasoning about changes over time.
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Causal Discovery

• Parameterization
• Linear models: see path modeling

• Structure Learning
• Constraint-based learning = CI learning
• Metric learning: Bayesian (or non-Bayesian) scoring

function plus search
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Parameterization

Spiegelhalter & Lauritzen (1990) learning CPTs:

• assume parameter independence

• each CPT cell i = a parameter in a Dirichlet distribution

D[α1, . . . , αi , . . . , αK ]

for K parents

• prob of outcome i is αi/ΣK
k=1αk

• observing outcome i update D to

D[α1, . . . , αi + 1, . . . , αK ]

Learning without parameter independence:

• Decision trees to learn structure within CPTs (Boutillier et al.
1996).

• Hybrid model learning (CPTs, d-trees) (O’Donnell et al. 2006a)

Main research problems: dealing with noise & missing data.



Bayesian Artificial
Intelligence

57/75

Abstract

Reichenbach’s
Common Cause
Principle

Bayesian networks

Causal discovery
algorithms

References

Learning Causal Structure

This is the harder problem.
Size of the dag space is superexponential:

• Number of possible orderings: n!

• Times number of ways of pairing up (for arcs): 2Cn
2

• Minus number of possible cyclic graphs

Without the subtraction (which is a small proportion):

n n!2Cn
2

1 1
2 4
3 48
4 1536
5 12280
10 127677049435953561600
100 [too many digits to show]
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Constraint-Based Learning
Verma-Pearl Algorithm

IC algorithm (Verma and Pearl, 1991)

Suppose you have an Oracle who can answer yes or
no to any question of the type:

X |= Y |S?

(Is X conditional independent Y given S?)

Then you can learn the correct causal model, to
within its statistical equivalence class (pattern).
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Verma-Pearl Algorithm

Their IC algorithm allows the discovery of the set of
causal models consistent with all such answers
(“patterns”):
Step 1 Put an undirected link between any two variables

X and Y iff
for every S s.t. X , Y 6∈ S

X 6 |= Y |S

Step 2 For every undirected, uncovered collision
X − Z − Y orient the arcs X → Z ← Y iff

X 6 |= Y |S

for every S s.t. X , Y 6∈ S and Z ∈ S.
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Verma-Pearl Algorithm

Step 3 For each connected pair X–Y, both:
1 if X → Y would introduce a cycle, then put

X ← Y ,
2 if X → Y would introduce X → Y ← Z

where X and Z are disconnected, then put
X ← Y .

Repeat this Step until no changes can be made
to any connected pair.
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PC: TETRAD

Spirtes, Glymour and Scheines (1993) made this approach
practical.
Replace the Oracle with statistical tests:

• for linear models a significance test on partial correlation

X |= Y |S iff ρXY ·S = 0

• for discrete models a χ2 test on the difference between
CPT counts expected with independence (Ei ) and
observed (Oi )

X |= Y |S iff
∑

i

Oi ln
(

Oi

Ei

)2

≈ 0

Implemented in their PC Algorithm
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PC

• Heuristics used to speed up search.
• Result: discovered pattern.
• Current version is in TETRAD IV
• PC is also (being) implemented by numerous BN

tools, including Weka and Hugin
• Advantages: simple, quick and free
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Metric Causal Discovery

A very different approach is metric learning of causality:

• Develop a score function which evaluates any
Bayesian network as a whole relative to the
evidence.

• Originally this was done in a brute force Bayesian
computation of

P(dag|data)

by counting methods (Cooper & Herskovits, 1991)
• CD then means: search the space of dags looking

for that dag which maximizes the score.
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Metric Discovery Programs

K2 (Cooper & Herskovits)
Greedy search. Mediocre performance.

MDL (Lam & Bacchus, 1993; Friedman, 1997)
An information-theoretic scoring function with
various kinds of search, such as beam search.
Friedman allows for hybrid local structure.

BDe/BGe (Heckerman & Geiger, 1995)
A Bayesian score; edit-distance priors supported;
returns a pattern. Good performance.

CaMML (Korb & Nicholson, 2004; ch 8)
A Bayesian information-theoretic scoring function
with MCMC (sampling search); returns dags and
patterns. Performance similar to BDe/BGe.
Supports priors and hybrid local structure.
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GES

Greedy Equivalence Search (GES)
• Product of the CMU-Microsoft group (Meek, 1996;

Chickering, 2002)
• Two-stage greedy search: Begin with unconnected

pattern
1 Greedily add single arcs until reaching a local

maximum
2 Prune back edges which don’t contribute to the score

• Uses a Bayesian score over patterns only
• Implemented in TETRAD and Murphy’s BNT
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Recent Extensions to CaMML

Two significant enhancements have been added in the
last few years.
Expert priors (O’Donnell et al., 2006b)
• Being Bayesian, it is relatively easy to incorporate

non-default priors into CaMML. We’ve done this in
various ways, specifying strengths for:

• A prior dag, computing a prior distribution via edit
distance

• Arc densities
• Topological orders, total or partial

Hybrid model learning (O’Donnell et al., 2006a)
• Allowing varying representations of local structure

(CPTs, d-trees, logit model) throughout the network
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Causal Discovery: Summary

• Constraint-based learning is simple and intuitive
• Metric learning is neither, but generally more

effective
• CaMML uses an efficient coding for BNs and

stochastic search
• though the TOM space, not dag space
• with a default prior rewarding richer dag models
• with extensions allowing incorporation of expert prior

information
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